CÁLCULO SISTEMA DE ROCIADORES – EJEMPLO, PARTE 1

INTRODUCCIÓN

Aquí se presenta la primera parte de un ejemplo básico de cálculo hidráulico de un sistema de rociadores automáticos, configurado tipo “árbol”. Los sistemas con esta configuración son los más sencillos de calcular manualmente; los sistemas tipo «anillo» requieren pasos y ecuaciones adicionales, lo que complica su cálculo; y los sistemas tipo «parrilla» en la práctica son casi imposibles de calcular manualmente, por lo que se hace necesario utilizar software especializado.

Anteriormente se han publicado artículos que sería conveniente repasar, ya que los temas tratados están relacionados con éste; los mismos se indican a continuación:


GENERALIDADES SOBRE CÁLCULO HIDRÁULICO

Un sistema diseñado hidráulicamente está destinado para cumplir con la densidad de descarga especificada de los rociadores operando sobre un área de aplicación en una forma bastante uniforme.

El criterio de diseño se selecciona en base al grado de riesgo. Cuando se diseña, es importante considerar los posibles cambios en la ocupación de manera que la protección pueda ser maximizada, dado que usualmente es difícil mejorar los sistemas diseñados hidráulicamente debido a que los diámetros de las tuberías se seleccionan en función de las pérdidas de presión, para optimizar el uso del suministro de agua disponible.

El sistema tipo árbol se caracteriza por tuberías de gran tamaño cerca del montante. A medida que el sistema se extiende hacia las áreas más alejadas, las tuberías se hacen más pequeñas, similar a las ramas de un árbol. La disposición general de los sistemas tipo árbol tiene un gran efecto sobre la demanda hidráulica. Los sistemas que son dispuestos muy simétricamente con ramales cortos tienen relativamente baja demanda comparados con aquellos que son alimentados por el extremo y tienen ramales largos.

La demanda de caudal mínima teórica se obtiene multiplicando la densidad de descarga por el área de diseño del sistema. Esta no es la demanda  verdadera de caudal debido a las pérdidas por fricción que ocurren en las tuberías. Los rociadores activados más cerca del montante disponen de presiones más altas, lo que permite un mayor flujo en cada rociador, resultando en una mayor demanda de caudal en el sistema.

Generalmente, un sistema con una cantidad razonable de pérdidas por fricción tendrá entre un 10% a un 15% de incremento sobre el caudal teórico en la base del montante. Este incremento se denomina “el exceso de flujo”. Mientras mayor es el “exceso de flujo” menos eficiente es la red de tuberías del sistema. Los sistemas alimentados por el extremo pueden tener “factores de exceso” aproximándose a 1,6. Utilizar un “factor de exceso” entre 1,1 y 1,2 resulta útil para aproximar el caudal del suministro de agua antes que el sistema sea diseñado.

El proceso de cálculo tradicionalmente comienza en el rociador hidráulicamente más remoto ya que esto es indicativo de la peor condición en el sistema.

Usando la ecuación Q = k(P)1/2 y tablas de pérdidas por fricción basadas en la ecuación de Hazen-Williams, es simplemente una cuestión de cálculo progresivo determinar el caudal y la presión requeridos en la base del montante.

DATOS NECESARIOS PARA EL CÁLCULO HIDRÁULICO

Para calcular hidráulicamente un sistema de rociadores se requiere de ciertos datos:

  • El área de cobertura por rociador.
  • La densidad de descarga.
  • El área de diseño.
  • El factor K de los rociadores.
  • El coeficiente C de las tuberías.
  • El tipo de tubería utilizada en el sistema.


Adicionalmente, se necesitan detalles de las tuberías lo cual incluye lo siguiente:

  • Diámetros.
  • Longitudes.
  • Cambios de elevación.
  • Accesorios de conexión.


Por suspuesto, es muy recomendable contar con los planos de diseño del sistema, preferiblemente isometrías, donde se indicarán los nodos o puntos de referencia.

Otro aspecto importante que debe considerarse, es contar con una planilla o dormato donde ir llevando el registro de los datos y resultados.

EJERCICIO:

Seguidamente se plantea el ejercicio a resolver como ejemplo.

Calcular la demanda de caudal y presión en la válvula del punto E del sistema de rociadores mostrado en la siguiente imagen: (Medidas en pies, diámetros en pulgadas)

                                (Se hace necesario volver a la figura a medida que se avanza en los cálculos)

PROCEDIMIENTO DE CÁLCULO:

1) Identificar la clasificación de la ocupación protegida.

Supóngase Riesgo Ordinario grupo II, según NFPA 13.

2) Seleccionar el tamaño del área de operación de rociadores (Área de Diseño).

Asumamos un Área de operación de 1.500 pie2.

(El diseñador tiene la opción de usar cualquier tamaño de área permitido por la norma, de acuerdo a la clasificación de la ocupación)

3) Determinar la densidad de descarga requerida.

De acuerdo a las curvas de Densidad/Área de NFPA 13, para un área de diseño de 1.500 pie2 y una ocupación de Riesgo Ordinario II, la densidad mínima requerida es 0,2 gpm/pie2.

(El diseñador tiene la opción de usar cualquier valor de densidad a la derecha de la curva)

4) Determinar el área de cobertura de rociadores.

Ar = S x L

Ar = 12 x 10 = 120 pie2

5) Determinar el número de rociadores contenidos en el área de diseño.

Esto se obtiene dividiendo el área de diseño entre el área de cobertura de rociadores:

Nr = Ad/Ar

​​\( Nr = 1.500/120 = 12,5 \to 13 \)​​ rociadores

6) Establecer el perfil del área de diseño.

NFPA 13 requiere que el área de diseño sea rectangular, con su lado más largo de al menos 1,2 veces la raíz cuadrada del área de diseño, paralelo a los ramales.

La longitud obtenida se divide por la distancia entre rociadores para obtener cuántos rociadores se incluyen en el lado más largo del área de diseño:

Nrl = W/S

\( Nrl = 46,48/12 = 3,87 \to 4 \)​ rociadores

7) Calcular el caudal mínimo requerido en el primer rociador.

El caudal mínimo requerido en el rociador 1 (el más alejado) se determina multiplicando la densidad de descarga por el área de cobertura del rociador:

q = Dd x Ar

q1 = 0,2 gpm/pie2 x 120 pie2 = 24 gpm

q1 = 24 gpm

8) Calcular la presión mínima requerida en el primer rociador.

La presión mínima requerida para descargar el caudal mínimo por el rociador 1 se calcula a partir de la ecuación de flujo por orificios:

\[ q=k\sqrt{{P}} \to P = (q/k)^2 \]

Asumamos un factor K = 5,6

P1 = (24/5,6)2 = 18,37 psi

P1 = 18,37 psi

(NFPA 13 prescribe una presión mínima de 7 psi)

9) Calcular la pérdida por fricción entre los rociadores 1 y 2.

Se puede utilizar la fórmula de Hazen-Williams para computar las pérdidas por fricción entre rociadores; pero lo más común es obtener el factor de fricción de tablas o gráficos existentes. El factor obtenido se multiplica por la longitud del tubo entre rociadores.

Fórmula de Hazen-Williams:

Pf: Pérdidas por fricción en psi/pie
Q: Caudal en gpm
C: Coeficiente de rugosidad, depende de la tubería, 120 en este ejemplo.
D: Diámetro interno de la tubería (schedule 40 en este ejemplo).

El caudal que circula por la tubería entre los rociadores 1 y 2 es el mismo que sale por el rociador 1.

10) Obtener la presión en el rociador 2.

La pérdida por fricción entre los rociadores 1 y 2 se suma a la presión en el primer rociador para obtener la presión requerida en el rociador 2.

P2 = P1 + Pf1 = 18,37 + 2,16 = 20,53 psi

P2 = 20,53 psi

11) Calcular el caudal por el rociador 2.

El caudal que descarga el rociador 2 se determina mediante la ecuación de flujo por orificios:

12) Calcular la pérdida por fricción entre los rociadores 3 y 2.

El caudal que pasa entre los rociadores 3 y 2 es la suma de los caudales de los rociadores 1 y 2.

q3-2 = q1 + q2

q3-2 = 24 + 25,37 = 49,37 gpm

13) Obtener la presión en el rociador 3.

La pérdida por fricción entre los rociadores 3 y 2 se suma a la presión en el rociador 2 para obtener la presión requerida en el rociador 3.

P3 = P2 + Pf2 = 20,53 + 8,28 = 28,81 psi

P3 = 28,81 psi

14) Calcular el caudal por el rociador 3.

El caudal que descarga el rociador 3 se determina mediante la ecuación de flujo por orificios:

15) Calcular la pérdida por fricción entre los rociadores 4 y 3.

El caudal que pasa entre los rociadores 4 y 3 es la suma de los caudales de los rociadores 1, 2 y 3.

q4-3 = q1 + q2 + q3

q4-3 = 24 + 25,37 + 30,06 = 79,43 gpm

16) Obtener la presión en el rociador 4.

La pérdida por fricción entre los rociadores 4 y 3 se suma a la presión en el rociador 3 para obtener la presión requerida en el rociador 4.

P4 = P3 + Pf3 = 28,81 + 2,52 = 31,33 psi

P4 = 31,33 psi

17) Calcular el caudal por el rociador 4.

El caudal que descarga el rociador 4 se determina mediante la ecuación de flujo por orificios:

18) Calcular la pérdida por fricción entre el punto A y el rociador 4.

La pérdida por fricción entre el rociador 4 y la intersección con el tubo colector debe incluir el accesorio de conexión. El diámetro del accesorio lo determina el diámetro del ramal. En este ejemplo, aunque hay una Te el flujo no se divide ya que los rociadores del lado izquierdo no se incluyen en el área de diseño; por lo tanto, se considera como un codo de 90º. La longitud equivalente se obtiene de tablas existentes.

El caudal que pasa por la tubería entre el punto A y el rociador 4 es la suma de los caudales por los rociadores 1, 2, 3 y 4.

qA-4 = q1 + q2 + q3 + q4

qA-4 = 24 + 25,37 + 30,06 + 31,34 = 110,77 gpm

19) Obtener la presión en el punto A

La pérdida por fricción entre el punto A y el rociador 4 se suma a la presión en el rociador 4 para obtener la presión requerida en el punto A.

PA = P4 + Pf4 = 31,33 + 3,8 = 35,13 psi

PA = 35,13 psi

20) Calcular un “factor K” para la intersección del ramal con el colector.

Con la presión y el caudal en el punto de intersección (A) se puede determinar un factor K, utilizando la ecuación de flujo por orificios:

Este factor K es igual para todas las demás intersecciones que sean similares. Para la intersección diferente se debe determinar otro factor K.

En el próximo post se terminará de desarrollar el ejercicio, completando los cálculos hasta el punto E.

Ing. Luis Ybirma
Caracas – Venezuela

Fuentes:   NFPA Automatic Sprinkler System Handbook, Thirteenth Edition
Sprinkler System Hydraulics. IRInformation IM.12.1.1.1. HSB Industrial Risk Insurers, 1999
Russel P. Fleming. Automatic Sprinkler System Calculations. SFPE Handbook of Fire Protection Engineering, 2002
Notas:
1. El contenido de este artículo no es una Interpretación Formal de NFPA. Lo aquí expresado es la interpretación personal del autor y no necesariamente representa la posición oficial de las normas NFPA y sus Comités Técnicos. Por otra parte, el lector es libre de estar de acuerdo o no con lo aquí expresado.
2. Todas las imágenes y marcas comerciales que se publican en este Blog son marcas registradas por sus propietarios, y se utilizan sólo con fines didácticos e informativos.
Artículo Anterior
Próximo Artículo
  •  
  •  
  •  
  •